Home
Class 12
MATHS
The right hand limit of the funtion f(x)...

The right hand limit of the funtion f(x) = 4

Promotional Banner

Similar Questions

Explore conceptually related problems

The left hand limit of the function f(x)=4

Evaluate right-handed limit of the function: f(x)={((|x-3|)/(x-3),x!=3),(0,x=3):} at x= 3.

Evaluate right-handed limit of the function : f(x)={{:(abs(x-3)/(x-3)",",x ne 3), (" 0,", x=3):} at x = 3.

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x!=4, 0,x=4 ,at x=4

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x!=4 0,x=4a tx=4

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x!=4 0,x=4a tx=4

Evaluate the left-and right-hand limits of the function f(x)={(|x-4|)/(x-4),x=4, 0,x=4

Evaluate the left hand and right hand limits of the function defined by f(x)={(1+x^(2)", if "0lexle1),(2-x^(2)", if "xgt1):}" at "x=1 also, show that lim f(x) does not exist.

Find the left and right hand limits of the function at the point 'a' mentioned against them. Hence check whether the function have limits at those points. f(x)={{:(1-x if , x le1),(1+x if , x gt 1):},a=1

Find the left and right hand limits of the function at the point 'a' mentioned against them. Hence check whether the function have limits at those points. f(x)={{:((x)/(2),if x lt 2),((x^(2))/(3),if x ge2):},a=2