Home
Class 12
MATHS
If the curve x^(2)+3y^(2)=9 subtends an ...

If the curve `x^(2)+3y^(2)=9` subtends an obtuse angle at the point `(2alpha, alpha)` then a possible value of `alpha^(2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha=-3/6, alpha in [0,2pi] then the possible values of cos (alpha/2) , is/are

If sin alpha=-3/6, alpha in [0,2pi] then the possible values of cos (alpha/2) , is/are

If sin alpha=-(3)/(5),alpha in[0,2 pi] then the possible values of cos((alpha)/(2)) is

The graph of 2x=5-3y cuts the x-axis at the point P(alpha,beta) . The value of (2alpha+beta) is :

If x^(3)+3x^(2)-9x+c=0 have roots alpha,alpha and beta then possible value of alpha+beta is

If the tangent drawn to the curve y=x^(3)+3x^(2)+2x+2" at "(0,2) also touches the curve y=kx^(2) at (alpha,beta), then absolute value of (alpha+(beta)/(k)) equal to

The graph of 2x = 5-3y cuts the x-axis at the point P( alpha,beta ). The value of (2alpha+beta) is

The equation of the tangent to the curve x^((2)/(3))+y^((2)/(3))= a^((2)/(3)) at the point (a cos^(3) alpha , a sin^(3) alpha) is-

If (alpha,alpha) lies inside the circle x^(2)+y^(2)=9 then find the region of (alpha,alpha)