Home
Class 12
MATHS
The number N=(1+2log(3)2)/((1+log(3)2)^(...

The number `N=(1+2log_(3)2)/((1+log_(3)2)^(2))+(log_(6)2)^(2)` when simplified reduces to:

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(3)^(2), log_(6)^(2), log_(120^(2) are in

The value of (1+2log_(3)2)/((1+log_(3)2)^(2))+(log_(6)2)^(2) is 2(b)3(c)4(d)1

The value of (1+2(log)_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is

log_(3)(2),log_(6)(2) and log_(12)(2) are in

log_(2)(x+1)-log_(2)(3x-1)=2

(2log_(6)3)/(log_(2)6)+(log_(6)2)^(2)+(1)/(log_(3)^(2)6) is a

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

log_(3)2,log_(6)2,log_(12)2 are in