Home
Class 12
MATHS
lim(x->0) (tan^2[x])/([x]^2), where [] r...

`lim_(x->0) (tan^2[x])/([x]^2),` where [] represents greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Statement 1:lim_(x rarr0)[(tan^(-1))/(x)]=0, where [.] represents greatest integer function. Statement 2:(tan^(-1))/(x)<1 in the neighbourhood of x=0