Home
Class 12
MATHS
If vec a , vec ba n d vec c are non cop...

If ` vec a , vec ba n d vec c` are non coplanar vectors and ` vec axx vec c` is perpendicular to ` vec axx( vec bxx vec c),` then the value of `[axx( vec bxx vec c)]xx vec c` is equal to `[ vec a vec b vec c]` b. `2[ vec a vec b vec c] vec b` c. ` vec0` d. `[ vec a vec b vec c] vec a`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a. vec c)| vec b|^2=( vec a. vec b)( vec b.vec c)( vec c.vec a) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a. vec c)| vec b|^2=( vec a. vec b)( vec b.vec c)( vec c.vec a) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a . vec c)| vec b|^2=( vec a . vec b)( vec b . vec c) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

If vec a is parallel to vec bxx vec c , then ( vec axx vec b) . ( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these