Home
Class 12
MATHS
underset(n rarr oo)(lim) ((n)/(n^(2) + 1...

`underset(n rarr oo)(lim) ((n)/(n^(2) + 1^(2)) + (n)/(n^(2) + 2^(2)) + (n)/(n^(2) + 3^(2)) + …+ (1)/(5n))` बराबर है

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+.....+(1)/(n)]

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2) )+(n+2)/(n^(2)+2^(2))+(n^+3)/(n^(2)+3^(2))+.....1/n] =

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

lim_(n rarr oo) { n/(n^(2)+1^(2)) + n/(n^(2)+2^(2))+......+ n/(n^(2)+n^(2))} is equal to