Home
Class 12
MATHS
If the straight lines (x-1)/(2)=(y+1)/(k...

If the straight lines `(x-1)/(2)=(y+1)/(k)=(z)/(2) and (z+1)/(5)=(y+1)/(2)=(z)/(k)` are coplanar, then the plane(s) containing these two lines is/are

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight lines (x-1)/(2)=(y+1)/(k)=(z)/(2) and (x+1)/(5)=(y+1)/(2)=(z)/(k) are coplanar, then the plane(s) containing these two lines is/are

If the straight lines (x-1)/(2)=(y+1)/(k)=(z)/(2) and (x+1)/(5)=(y+1)/(2)=(z)/(k) are coplanar, then the plane(s) containing these two lines is/are

If the straight lines (x-1)/(2)=(y+1)/(k)=(z)/(2) and (x+1)/(5)=(y+1)/(2)=(z)/(k) are coplanar then the plane(s) containing these two lines is (are)

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

Lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-K) and (x-1)/(K)=(y-4)/(2)=(z-5)/(1) are coplanar if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if