Home
Class 12
MATHS
lim(xrarr0) [(100 tan x sin x)/(x^2)] is...

`lim_(xrarr0) [(100 tan x sin x)/(x^2)]` is (where `[.]` represents greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

lim_(x rarr0)[(99tan x sin x)/(x^(2))] = Where [.] denotes the greatest integer function

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

Statement 1:lim_(x rarr0)[(tan^(-1))/(x)]=0, where [.] represents greatest integer function. Statement 2:(tan^(-1))/(x)<1 in the neighbourhood of x=0