Home
Class 12
MATHS
If f(x)=(1)/(x^2) , show that f(x+h)-f(x...

If `f(x)=(1)/(x^2)` , show that `f(x+h)-f(x-h)=-(4xh)/((x^2-h^2)^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=1/(4x^(2)) , then proved that (f(x-h)-f(x+h))/h=x/((x^(2)-h^(2))^(2))

If f(x) =1/x , then show that lim_(hrarr0)(f(2+h)-f(2))/h=-1/4

(1) If f(x) = sqrt(x) , prove that : (f(x + h) - f(x))/(h) = (1)/(sqrt(x + h) + sqrtx) . (2) If f(x) = x^(2) , find : (f(1.1) - f(1))/(1.1 - 1) .

If f(x)=(1)/(x) , prove that , underset(hrarr0)"lim"(f(2+h)-f(2))/(h)=-(1)/(4)

If f(x)= x^2 , then (f(x+h)-f(x))/(h) =

If f(1+x)=x^(2)+1 , then f(2-h) is

If f(x)=ax^(2)+bx+c , show that , underset(hrarr0)"lim"(f(x+h)-f(x))/(h)=2ax+b

If f(x)=e^(x+a) , g(x)=x^(b^2) and h(x)=e^(b^2x) ,show that (g[f(x)])/(h(x))=e^(ab^2)

If f(1+x)=x^(2)+1 then f(2-h) is