Home
Class 12
MATHS
If tan ^(-1) x + tan ^(-1) y + tan ^(-1)...

If `tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2),` then ` xy + yz+zx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^(-1) x+tan ^(-1) y+tan ^(-1) z=(pi)/(2), then 1-x y-y z-z x=

If tan ^(-1) x+tan ^(-1) y+tan ^(-1) z=(pi)/(2) then x y+y z+z x=

If tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2) , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these

tan^(-1) x + tan^(-1) y + tan^(-1) z = (pi)/2 show that : xy + yz + zx = 1 .

"If " tan^(-1) x+ tan^(-1) y+tan ^(-1)z=(pi)/(2) , show that , xy+yz+zx =1

If tan ^(-1) ""x + tan ^(-1) ""y + tan ^(-1) ""z=(pi)/(2) and x + y +z = sqrt(3) then show that x =y=z.

If Tan^(-1)x+Tan^(-1)y + Tan^(-1)z = (pi)/2 , then prove that xy + yz + zx = 1

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to