Home
Class 12
MATHS
If A+B+C=pi, prove that: cotB cotC + cot...

If `A+B+C=pi`, prove that: `cotB cotC + cotC cotA +cotA + cotA cotB=1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that: cotB cotC + cotC cotA + cotA cotB=1 .

If A+B+C=pi , prove that : (cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC

If A+B+C=pi , prove that : (cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC

If A+B+C=kpi, k inZ Then prove that, cotB.cotC+cotC.cotA+cotA.cotB=1 .

If A+B+C = pi , prove that : cotAcotBcotC=cotA+cotB +cotC-cosecAcosecBcosecC.

If A+B+C=pi/2 , show that : cotA+cotB+cotC=cotA cotB cotC

If A+B+C=pi/2 , show that : cotA+cotB+cotC=cotA cotB cotC

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot