Home
Class 12
PHYSICS
Let X = A . bar (BC) . Evaluate X for ...

Let `X = A . bar (BC)` . Evaluate X for
(a) `A = 1 , B = 0 , C = 1`, (b) A = B = C = 1 and ( c) A = B = C = 0.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let X=A bar(BC)+B bar(CA)+C bar(AB) .Evalute X for (a) A=1,B=0,C=1 (b) A=B=C=1 A=B=C=0

Let X=A bar(BC)+B bar(CA)+C bar(AB) .Evalute X for (a) A=1,B=0,C=1 (b) A=B=C=1 (c) A=B=C=0

Let X=A bar(BC)+B bar(CA)+C bar(AB) .Evalute X for (a) A=1,B=0,C=1 (b) A=B=C=1 (c) A=B=C=0

If (i) A = 1, B = 0, C = 1, (ii) A = B = C = 1, (iii) A = B = C = 0 and (iv) A = 1 = B, C = 0 then which one of the following options will satisfy the expression, X=bar(A.B.C)+bar(B.C.A)+bar(C.A.B)

If (i) A = 1, B = 0, C = 1, (ii) A = B = C = 1, (iii) A = B = C = 0 and (iv) A = 1 = B, C = 0 then which one of the following options will satisfy the expression, X=bar(A.B.C)+bar(B.C.A)+bar(C.A.B)

Evaluate Delta=|[1, a, bc],[ 1, b, c a],[ 1, c, a b]|

L_1=(a-b)x+(b-c)y+(c-a)=0L_2=(b-c)x+(c-a)y+(a-b)=0L_3=(c-a)x+(a-b)y+(b-c)=0 KAMPLE 6 Show that the following lines are concurrent L1 = (a-b) x + (b-c)y + (c-a) = 0 12 = (b-c)x + (c-a) y + (a-b) = 0 L3 = (c-a)x + (a-b) y + (b-c) = 0. ,

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

Let f(x)=(ax + b )/(cx+d) . Then the fof (x)=x , provided that : (a!=0, b!= 0, c!=0,d!=0) ; A. d=-a , B. d=a ,C. a=b=c=d=1 ,D. None of these.