Home
Class 12
MATHS
If f(a+b-x)=f(x), then inta^b x f(x)dx i...

If `f(a+b-x)=f(x)`, then `int_a^b x f(x)dx` is equal to (A) `(a-b)/2int_a^b f(a+b-x)dx` (B) `(a+b)/2int_a^b f(b-x)dx` (C) `(a+b)/2int_a^b f(x)dx` (D) `(b-a)/2int_a^b f(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(a+b-x) = f(x), then int_a^b xf(x) dx =

If f(a+b-x)=f(x)," then "int_(a)^(b)xf(x)dx=

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to a. (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

If f(a+b-x)=f(x), then prove that int_a^b xf(x)dx =(a+b)/2int_a^bf(x)dxdot

int_a^b[d/dx(f(x))]dx

If f(a+b-x)=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

If f(a+b-x)=f(x),\ then prove that \ int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dx