Home
Class 12
MATHS
Show that the straight line xcosalpha+ys...

Show that the straight line `xcosalpha+ysinalpha=p` touches the curve `x y=a^2,` if `p^2=4a^2cosalphasinalphadot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the straight line x cos alpha+y sin alpha=p touches the curve xy=a^(2), if p^(2)=4a^(2)cos alpha sin alpha

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

If the straight line xcosalpha+ysinalpha=p touches the curve x y=a^2, then prove that p^2=4a^2cosalphasinalphadot

Prove that the line xcosalpha+ysinalpha=p touches the ellipse (x^2/a^2+y^2/b^2)=1 If p^2=a^2coas^2alpha+b^2sin^2alpha .

Show that the line xcos alpha+ysinalpha=p touches the parabola y^2=4ax if pcosalpha+asin^2alpha=0 and that the point of contact is (atan^2alpha,-2atanalpha) .

Show that the line xcos alpha+ysinalpha=p touches the parabola y^2=4ax if pcosalpha+asin^2alpha=0 and that the point of contact is (atan^2alpha,-2atanalpha) .

Show that the straight line 3x + 4y = 20 touches the circle x ^2 + y ^2 = 16.

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1 , then p^2dot

If the line x cosalpha + y sin alpha = P touches the curve 4x^3=27ay^2 , then P/a=