Home
Class 11
MATHS
In DeltaABC, prove that: a(cosB+cosC)=2(...

In `DeltaABC`, prove that: `a(cosB+cosC)=2(b+c)sin^(2)A/2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC , prove that: a(cosC-cosB)=2(b-c)cos^(2)A/2

In DeltaABC , prove that: a(cosC-cosB)=2(b-c)cos^(2)A/2

In Delta ABC prove that a(cosB + cosC) = 2(b+c) sin^2(A/2)

In any DeltaABC , prove that a(cosC-cosB)=2(b-c)cos^(2)""1/2A

In DeltaABC , prove that: a(bcosC-(c)cosB)=b^(2)-c^(2)

In any DeltaABC , prove that a(bcosC-c cosB)=(b^(2)-c^(2))

In DeltaABC , prove that: (c-bcosA)/(b-c (cosA))=(cosB)/(cosC)

In DeltaABC , prove that: (c-bcosA)/(b-ccosA)=(cosB)/(cosC)

In any DeltaABC , prove that (1+cos(A-B)cosC)/(1+cos(A-C)cosB)=(a^(2)+b^(2))/(a^(2)+c^(2))

In DeltaABC , Prove that: cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2