Home
Class 12
MATHS
2^(n-1)sin(pi/n)sin((2pi)/n)....sin((n-1...

`2^(n-1)sin(pi/n)sin((2pi)/n)....sin((n-1)/n)pi` equals :

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to :

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to : (A) 0 (B) pi (C) 2 (D) ∞

underset(nrarroo)"lim"[sin'(pi) /(n)+sin'(2pi) /(n)+"......"+sin((n-1))/(n) pi ] is equal to :

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1/n) is equal to

The positive integer value of n >3 satisfying the equation 1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s

The positive integer value of n >3 satisfying the equation 1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s

The positive integer value of n >3 satisfying the equation 1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s