Home
Class 12
MATHS
I fy=sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x...

`I fy=sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)),t h e n(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Ify=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)), then (dy)/(dx)

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) , then (dy)/(dx) is

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) , then find (dy)/(dx) .

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) then (dy)/(dx) is equal to :

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)dot

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)dot

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x>0 Find (dy)/(dx).

If y= sec ^(-1)(( x+1)/(x-1)) +sin ^(-1) ((x-1)/(x+1) ) , " then " (dy)/(dx) is :

y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)) , x > 0. Find dy/dx

y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)) , x > 0. Find dy/dx