Home
Class 12
MATHS
The minimum value of 4e^(2x) + 9e^(-2x)...

The minimum value of ` 4e^(2x) + 9e^(-2x) ` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of 4e^(x)+9e^(-x) is

The minimum value of 4e^(x)+9e^(-x) is

Prove that , the minimum value of (i) 4e^(2x)+9e^(-2x)" is "12 , (ii) (x)/(logx) is e.

The minimum value of 3e^x+4e^(-x) is

Prove that , the minimum value of 9e^(x)+25e^(-x) is 30.

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0