Home
Class 12
MATHS
If y = sec^(-1) ((x^(2) + 1)/(x^(2) -1))...

If `y = sec^(-1) ((x^(2) + 1)/(x^(2) -1)) " then " (dy)/(dx) =` ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx) = ?

If y=sec^(-1)((x^(2)+1)/(x^(2)-1)) , then find (dy)/(dx) . Here f^(-1)(x) expression is of the form (x^(2)+a^(2))/(x^(2)-a^(2)) , so we substitute x=tan theta and then use suitable trigonometrical formula to write it in simplest form and then differentiate

If sec^(-1) ((1 + x)/(1-y)) = a , " then " (dy)/(dx) is

y = sec^(-1)((1+x^(2))/(1-x^(2))), find dy/dx.

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) , then (dy)/(dx) is

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) then (dy)/(dx) is equal to :

If y = sqrt((sec x -1)/(sec x + 1)) " then " (dy)/(dx) = ?

Find (dy)/(dx) in the following: y= sec^(-1) ((x^(2) + 1)/(x^(2)-1))