Home
Class 12
MATHS
Let p=1+1/(sqrt(2))+1/(sqrt(3))+….+1/(sq...

Let `p=1+1/(sqrt(2))+1/(sqrt(3))+….+1/(sqrt(120))` and `q=1/(sqrt(2))+1/(sqrt(3))+….+1/(sqrt(121))` then

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 1/(sqrt(10) - sqrt(9)) - 1/(sqrt(11) - sqrt(10)) + 1/(sqrt(12) - sqrt(11)) - .... - 1/(sqrt(121) - sqrt(120)) is equal to

The value of (1)/(sqrt(10) - sqrt(9)) - (1)/(sqrt(11)-sqrt(10)) + (1)/(sqrt(12) - sqrt(11))………. - (1)/(sqrt(121) - sqrt(120)) is equal to

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

Evaluate : 1/( 1 + sqrt (2) ) + 1/( sqrt(2) + sqrt (3) ) + 1/ ( sqrt(3) + sqrt (4) )

Evaluate 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1