Home
Class 12
MATHS
If d/dx[f(x)]=xcosx+sinx " and " f(0)=2,...

If `d/dx[f(x)]=xcosx+sinx " and " f(0)=2`,
then f(x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)f(x)=cos x +sin x and f(0)=2 , then f(x)=.....

If (d)/(dx)[f(x)]=sinx+cosx , (i) Find f(x) (ii) Write f(x) , when f(x)=1

If (d)/(dx)(f(x))=4x such that f(2)=0, then f(x) is

If (d)/(dx)[f(x)]=f(x), then intf(x)[g'(x)+g''(x)]dx=

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

If (d/dx)f(x) = 4x^3 - 3/(x^4) such that f(2) = 0 . Then f(x) is