Home
Class 12
MATHS
If f(x)=e^(x) and g(x)=logx, then gof is...

If `f(x)=e^(x)` and `g(x)=logx`, then gof is____________.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(x) and g(x)=log_(e)x, then (gof)'(x) is

If f(x)=|x| and g(x)=|5x-2| , then find gof.

If f(x)=logx and g(x)=e^(x) , then (fog) (x) is:

If f(x)=e^(x) and g(x)=log_(e)x, then show that "fog=gof" and find f^(-1) and g^(-1) .

If f(x)=e^(x) and g(x)=log_(e)x(x>0), find fog and gof .Is fog =gof?

If f(x)=e^(x),g(x)=log e^(x) then find fog and gof

If f:RtoR and g:RtoR defined by f(x)=x^2 and g(x)=x+1 , then gof(x) is

If f(x) = e^x and g(x) = logx , Show that fog = gof , given x>0 .

If f(x)=e^x and g(x)=(log)_e x(x >0), find fog and gof . Is fog=gof?