Home
Class 11
MATHS
If f(x)={ mx^2+n, x<0; nx+m, 0<=x<=1; ...

If `f(x)={ mx^2+n, x<0; nx+m, 0<=x<=1; nx^3+m, x>1}`. For what integers m and n does both `lim_(x->0) f(x)` and `lim_(x->1) f(x)` exist?

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =[m x^2+n , x 1 . For what integers m and n does both (lim)_(x->1)f(x)dot

If f(x)={(mx^2+n, x 1):} . For what integers m and n does both lim_(x rarr 0)f(x) and lim_(x rarr 1)f(x) exist?

If f(x)=[mx^(2)+n,x 1. For what integers m and n does both (lim)_(x rarr1)f(x)

If f(x)={{:(mx^(2)+n",",xlt0),(nx+m",",0lexle1),(nx^(3)+m",",xgt1):} . For what integers m and n does both lim_(xrarr0)f(x) and lim_(xrarr1)f(x) exist?

If f(x)={{:(mx^(2)+n",",xlt0),(nx+m",",0lexle1),(nx^(3)+m",",xgt1):} . For what integers m and n does both lim_(xrarr0)f(x) and lim_(xrarr1)f(x) exist?

If f(x)={{:(mx^(2)+n",",xlt0),(nx+m",",0lexle1),(nx^(3)+m",",xgt1):} . For what integers m and n does both lim_(xrarr0)f(x) and lim_(xrarr1)f(x) exist?

If f(x)={{:(mx^(2)+n","xlt0),(nx+m","0lexle1),(nx^(3)+m","xgt1):} For what integers m and n does both lim_(xto0)f(x) and lim_(xto1)f(x) exist?

If f(x)={{:(mx^(2)+n",", x lt 0), (nx+m",", 0 le x le 1), (nx^(3)+m",", x gt 1):} . For what integers m and n does lim_(x to 0)f(x)" and "lim_(x to 1)f(x) exist ?

If f(x)= {(mx^2 + n, x lt 0),(nx + m, 0 le x le 1),(nx^3 + m , x gt 1) :} , for what integers m and n does lim_(x rarr 0) and lim_(x rarr 1) f(x) exist ?