Home
Class 12
MATHS
[" A curve passing through the point "(1...

[" A curve passing through the point "(1,1)" has the property that the perpendicular distance of the origin "],[" from normal at any pint "P" of the curve is equal to the distance of "P" from the "x" -axis is a circle with radius "],[=..............]

Promotional Banner

Similar Questions

Explore conceptually related problems

A curve passing through the point (1,2) has the property that the perpendicular distance of the origin from normal at any point P of the curve is equal to the distance of P from the x-axis is a circle with radius.

Find the equation of a curve passing through the point (1.1) if the perpendicular distance of the origin from the normal at any point P(x,y) of the curve is equal to the distance of P from the x-axis.

Find the equation of a curve passing through the point (1.1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.

Find the equation of a curve passing through the point (1.1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.

A curve y=f(x) has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of the point P from the x-axis. Then the differential equation of the curve

A curve y=f(x) has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of the point P from the x-axis. Then the differential equation of the curve

A curve y=f(x) has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of the point P from the x-axis. Then the differential equation of the curve

Let C be a curve y=f(x) passing through M(-sqrt(3),1) such that the y-intercept of the normal at any point P(x,y) on the curve C is equal to the distance of P from the origin.Find curve C

Let f(x,y) be a curve in the x -y plane having the property that distance from the origin of any tangent to the curve is equal to distance of point of contact from the y-axis.It f(1,2)=0, then all such possible curves are