Home
Class 11
MATHS
log(1+2+3)=log1+log2+log3...

log(1+2+3)=log1+log2+log3

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=log2 and y=log3, then a+bx+cy=[log1+log(1+3)+log(1+3+5)+....+log(1+3+5+....,+19)]- 2 [log1+log2+log3+.....+log7], where a,b and c are positive integers. The value of 2a+3b+5c is equal to (where log a=log_(10)a)

If a^(3)-b^(3)=0 then the value of log(a+b)-(1)/(2)(log a+log b+log3) is equal to

If a^(3)-b^(3)=0 then the value of log(a+b)-(1)/(2)(log a+log b+log3) is equal to

If a^(3)-b^(3)=0 then the value of log(a+b)-(1)/(2)(log a+log b+log3) is equal to

log(1/2)+log (2/3)+log(3/4) +….+ log(99/100) = ______

Find x if x-log48+3log2=(1)/(3)log125-log3

log_(2)1. log_(3)2. log_4)3.log_(5)4.log_(6)5……. Log_(200)199 = ______

If x^(2)+y^(2)=10xy prove that 2log(x+1)=log x+log y+2log2+log3

Show that (1)/(2)log9+2log6+(1)/(4)log81-log12=3log3