Home
Class 12
MATHS
Let A =[ (1,x/n),(-x/n,1)] then lim(n->o...

Let `A =[ (1,x/n),(-x/n,1)]` then `lim_(n->oo) A^n` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n) is:

Let A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n) is

Let A=[[1,x/n-x/n,1]], then lim_(n rarr oo)A^(n) is

Let A,=([1,-(x)/(n)(x)/(n),1]),B=([0,-11,0]) then lim_(x rarr0)[lim_(n rarr oo)(1)/(x)(I-A^(n))] equals

If x_1=3 and x_ +1= sqrt(2+x_n), n ge 1 , then lim_(nto oo) x_n is equal to

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

The value of lim_(n->oo) n^(1/n)

For n epsilon N let x_(n) be defined as (1+1/n)^((n+x_(n)))=e then lim_(nto oo)(2x_(n)) equals…..

For n epsilon N let x_(n) be defined as (1+1/n)^((n+x_(n)))=e then lim_(nto oo)(2x_(n)) equals…..