Home
Class 11
MATHS
" Re "((1+i)^(2))/(3-i)=...

" Re "((1+i)^(2))/(3-i)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the conjugate of each of the following : {:((i),(-5-2i),(ii),(1)/((4+3i)),(iii),((1+i)^(2))/((3-i)),(iv),((1+i)(2+i))/((3+i))),((v),sqrt(-3),(vi),sqrt(2),(vii),-sqrt(-1),(viii),(2-5i)^(2)):}

Find Re ((z_(1)z_(2))/(z_(1))), give z_(1)=2-i and z_(2)=-2+i

Reduce ((1)/(1+2i)+(3)/(1-i))((3-2i)/(1+3i)) to the form (a + ib).

((1-i)^(3))/(1-i^(3))=-2

If (1+i)^2 /(3 - i) =Z , then Re(z) =

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

If z_(1)=2-i,quad +2=-2+i, find :Re((z_(1)z_(2))/(z_(1)))

Let z_(1)=2-i, z_(2)= -2+i . Find (i) Re((z_(1)z_(2))/(z_1)) (ii) Im((1)/(z_(1)z_(2))) .

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))