Home
Class 14
MATHS
x^(2) - 10x+24 = 0, y^(2) - 14y+48 = 0...

` x^(2) - 10x+24 = 0, y^(2) - 14y+48 = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

I. x^(2) - 10x+24 = 0 II. y^(2) - 9y + 20 = 0

Centre of the circle inscribed in a rectangle formed by the lines x^2 - 8x+12 = 0 and y^2 - 14y +40=0 is

(i) x^(2) - 5x-14 = 0 (ii) 2y^(2) +11y + 14 = 0

I. 2x^(2) + 17x + 35 = 0" "II.8y^(2) - 14y-15 = 0

I. (x^(2)-10x + 16)//(x^(2)-12x+24) = 2//3 II. y^(2) - y - 20 = 0

I. x^(2) - 5x - 14 = 0" "II. Y^(2) + 7y + 10 = 0

To remove the x and y terms of the equation 14x^(2) - 4xy + 11y^(2) - 36 + 48 y + 41 = 0 the shifted origin is

I. x^(2) +20x + 4 = 50 -25x II. y^(2) - 10y - 24 = 0

The radical axis of the circles x^(2) + y^(2) - 6x - 4y - 44 = 0 " and " x^(2) + y^(2) - 14x - 5y - 24 = 0 is

If the two circle x^(2) + y^(2) - 10 x - 14y + k = 0 and x^(2) + y^(2) - 4x - 6y + 4 = 0 are orthogonal , find k.