Home
Class 12
MATHS
y=sin^(-1)(2xsqrt(1-x^(2))), -1/sqrt(2) ...

`y=sin^(-1)(2xsqrt(1-x^(2))), -1/sqrt(2) lt x lt 1/sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y = sin^(-1)(2xsqrt(1 - x^2)), -1/(sqrt2) lt x lt 1/(sqrt2)

Find (dy)/(dx) in the following y= sin^(-1) (2x sqrt(1-x^(2))), -(1)/(sqrt2) lt x lt (1)/(sqrt2)

Find (dy)/(dx) in the following : y= sin^(-1) (2x sqrt(1-x^(2))), (-1)/(sqrt(2)) lt x lt (1)/(sqrt(2)) .

Find (dy)/(dx) in the following : y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt(2)) lt x lt (1)/(sqrt(2)) .

Find (dy)/(dx) in the following : y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt(2)) lt x lt (1)/(sqrt(2)) .

Find (dy)/(dx) in the following: y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt2) lt x lt 1

Differentiate tan^(-1)(x/(sqrt(1-x^2))) with respect to sin^(-1)(2xsqrt(1-x^2)), if -1/(sqrt(2)) < x< 1 /(sqrt(2))

Find dy/dx of y=sin^-1 2xsqrt(1-x^2) (-1)/sqrt2 < x <1/sqrt2