Home
Class 12
MATHS
Let f(x) be an increasing function defin...

Let `f(x)` be an increasing function defined on `(0,oo)` . If `f(2a^2+a+1)>f(3a^2-4a+1),` then the possible integers in the range of `a` is/are `1` (b) 2 (c) 3 (d) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be an increasing function defined on (0,oo) . If f(2a^2+a+1)>f(3a^2-4a+1), then the possible integers in the range of a is/are (a) 1 (b) 2 (c) 3 (d) 4

Let f(x)) be an increasing function defined on (0.oo) If f(2a^(2)+a+1)gtf(3a^(2)-4a+1) , then the possible integers in the range of a is /are

Let f(x) be a increasing function defined on (0,\ oo)dot If f(2a^2+a+1)>f\ (3a^2-4a+1)dot Find the range of adot

Let f(x) be an decreasing function defined on (0,oo) . If f(3a^2-4a+1)gtf(2a^2+a+1) and the range of a is (o,K/3)uu(K,K+4) , find K

Let f:(0,oo)rarr R be a (strictly) decreasing function.If f(2a^(2)+a+1)

Let f(x) be a non-constant twice differentiable function defined on (oo, oo) such that f(x) = f(1-x) and f"(1/4) = 0 . Then

Let f(x) be a non-constant twice differentiable function defined on (oo, oo) such that f(x) = f(1-x) and f"(1/4) = 0 . Then

Let fbe a function defined as f : (0, e^(-3/2)]->[-1/4,oo) , f(x)=(In x)^2 + 3 In x+2 then f^-1(x) equals