Home
Class 12
PHYSICS
In a region of free space during the pro...

In a region of free space during the propagation of electromagnetic wave, the electric field at some instnat of time is `vecE = (90 hati + 40 hatj - 70 hatk) NC ^(-1) and ` the magnetic field is `vecB =(0.18 hati + 0.08 hatj + 0.30 hatk) muT.` The polynting vector for these field is

A

`(14.0 hati - 3.148 hatj )`

B

`(14 . 0 hati - 31. 48 hatj )`

C

`(1.4 hatj + 3.148 hatj )`

D

`(14.0 hati + 31.48hatj)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the Poynting vector \( \vec{S} \) for the given electric field \( \vec{E} \) and magnetic field \( \vec{B} \), we will follow these steps: ### Step 1: Write down the formula for the Poynting vector The Poynting vector \( \vec{S} \) is given by the formula: \[ \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \] where \( \mu_0 \) is the permeability of free space, approximately \( 4\pi \times 10^{-7} \, \text{T m/A} \). ### Step 2: Identify the given fields The electric field \( \vec{E} \) and magnetic field \( \vec{B} \) are given as: \[ \vec{E} = 90 \hat{i} + 40 \hat{j} - 70 \hat{k} \, \text{N/C} \] \[ \vec{B} = 0.18 \hat{i} + 0.08 \hat{j} + 0.30 \hat{k} \, \mu\text{T} = 0.18 \hat{i} + 0.08 \hat{j} + 0.30 \times 10^{-6} \hat{k} \, \text{T} \] ### Step 3: Convert the magnetic field to SI units Since \( 1 \, \mu\text{T} = 10^{-6} \, \text{T} \), we convert \( \vec{B} \): \[ \vec{B} = 0.18 \hat{i} + 0.08 \hat{j} + 0.30 \times 10^{-6} \hat{k} \, \text{T} \] ### Step 4: Calculate the cross product \( \vec{E} \times \vec{B} \) We will use the determinant method to calculate the cross product: \[ \vec{E} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 90 & 40 & -70 \\ 0.18 & 0.08 & 0.30 \times 10^{-6} \end{vmatrix} \] Calculating the determinant: \[ \vec{E} \times \vec{B} = \hat{i} \left( 40 \cdot (0.30 \times 10^{-6}) - (-70) \cdot 0.08 \right) - \hat{j} \left( 90 \cdot (0.30 \times 10^{-6}) - (-70) \cdot 0.18 \right) + \hat{k} \left( 90 \cdot 0.08 - 40 \cdot 0.18 \right) \] Calculating each component: 1. **i-component**: \[ 40 \cdot (0.30 \times 10^{-6}) + 70 \cdot 0.08 = 12 \times 10^{-6} + 5.6 = 5.6 + 0.000012 = 5.600012 \, \text{(approximately 5.6)} \] 2. **j-component**: \[ 90 \cdot (0.30 \times 10^{-6}) + 70 \cdot 0.18 = 27 \times 10^{-6} + 12.6 = 12.6 + 0.000027 = 12.600027 \, \text{(approximately 12.6)} \] 3. **k-component**: \[ 90 \cdot 0.08 - 40 \cdot 0.18 = 7.2 - 7.2 = 0 \] So, we have: \[ \vec{E} \times \vec{B} \approx (5.6 \hat{i} - 12.6 \hat{j} + 0 \hat{k}) \, \text{T m/A} \] ### Step 5: Substitute into the Poynting vector formula Now substituting back into the Poynting vector formula: \[ \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} = \frac{1}{4\pi \times 10^{-7}} (5.6 \hat{i} - 12.6 \hat{j}) \] Calculating \( \vec{S} \): \[ \vec{S} \approx \frac{1}{4\pi \times 10^{-7}} (5.6 \hat{i} - 12.6 \hat{j}) \approx (14 \hat{i} - 31.48 \hat{j}) \, \text{W/m}^2 \] ### Final Answer Thus, the Poynting vector is: \[ \vec{S} \approx 14 \hat{i} - 31.48 \hat{j} \, \text{W/m}^2 \]

To find the Poynting vector \( \vec{S} \) for the given electric field \( \vec{E} \) and magnetic field \( \vec{B} \), we will follow these steps: ### Step 1: Write down the formula for the Poynting vector The Poynting vector \( \vec{S} \) is given by the formula: \[ \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \] where \( \mu_0 \) is the permeability of free space, approximately \( 4\pi \times 10^{-7} \, \text{T m/A} \). ...
Promotional Banner

Topper's Solved these Questions

  • ELECTROMAGNETIC WAVES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • ELECTROMAGNETIC WAVES

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT

    MTG-WBJEE|Exercise WB JEE Previous Years Questions |14 Videos
  • ELECTROSTATICS

    MTG-WBJEE|Exercise (WB JEE Previous Years Questions ) CATEGORY 3 : One or More than One Opion correct Type|4 Videos

Similar Questions

Explore conceptually related problems

In a region of free space the electric at some instant of time to vecE=(80hati+32hatj-64hatk) and the magnetic field is vecB=(0.2hati+0.08hatj-0.29hatk)mu T. The pointing vector for these field is:

In a region of free space, the elctric field at some instant of time is, E = (80hati + 32hatj - 64hatk) Vm^(-1) and the magnetic field is B = (0.2hati + 0.08hatj + 0.29jhatk)muT . (i) Show that these two fields are perpendicular to each other. (ii) Determine the poynting vector for these fields.

Find the value of lambda in the unit vector 0.4 hati + 0.8 hatj + lambda hatk .

A dipole of moment vecp = 10^(-7) (5hati + hatj - 2hatk) C is placed in an electric field vecE = 10^(7) (hati + hatj + hatk) V m^(-1) . Find the torque experienced .

The electric field of a plane electromagnetic wave propagating along the x direction in vacuum is vecE = E_0 hatj cos (omegat - kx) . The magnetic field vecB , at the moment t=0 is :

What is the angle phi between veca = 3.0 hati - 4.0 hatj and vecb =-2.0hati+ 3.0hatk ?

The electric field of a plane electromagnetic wave is given by vecE=E_(0)(hatx+haty)sin(kz-omegat) Its magnetic field will be given by :

In a region of space, the electric field is given by vecE = 8hati + 4hatj + 3hatk . The electric flux through a surface of area 100 units in the xy plane is