Home
Class 12
MATHS
If f '(2) =1, then lim ( h to 0 ) (f (2+...

If `f '(2) =1,` then `lim _( h to 0 ) (f (2+ h ^(2)) -f ( 2- h ^(2)))/( 2h ^(2))`is equal to

A

0

B

1

C

2

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given that \( f'(2) = 1 \), we need to evaluate the following limit: \[ \lim_{h \to 0} \frac{f(2 + h^2) - f(2 - h^2)}{2h^2} \] ### Step 1: Recognize the form of the limit As \( h \to 0 \), both \( f(2 + h^2) \) and \( f(2 - h^2) \) approach \( f(2) \). Therefore, the expression becomes: \[ \frac{f(2 + h^2) - f(2 - h^2)}{2h^2} \to \frac{0}{0} \] This is an indeterminate form, which suggests that we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator with respect to \( h \): 1. **Differentiate the numerator**: \[ \frac{d}{dh}[f(2 + h^2) - f(2 - h^2)] = f'(2 + h^2) \cdot \frac{d}{dh}(2 + h^2) - f'(2 - h^2) \cdot \frac{d}{dh}(2 - h^2) \] This simplifies to: \[ f'(2 + h^2) \cdot 2h - f'(2 - h^2) \cdot (-2h) = 2h[f'(2 + h^2) + f'(2 - h^2)] \] 2. **Differentiate the denominator**: \[ \frac{d}{dh}[2h^2] = 4h \] ### Step 3: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{h \to 0} \frac{2h[f'(2 + h^2) + f'(2 - h^2)]}{4h} \] ### Step 4: Simplify the expression We can cancel \( h \) from the numerator and denominator (as \( h \to 0 \), \( h \neq 0 \)): \[ \lim_{h \to 0} \frac{2[f'(2 + h^2) + f'(2 - h^2)]}{4} = \lim_{h \to 0} \frac{f'(2 + h^2) + f'(2 - h^2)}{2} \] ### Step 5: Evaluate the limit As \( h \to 0 \), both \( 2 + h^2 \) and \( 2 - h^2 \) approach \( 2 \). Thus, we have: \[ \lim_{h \to 0} \frac{f'(2 + h^2) + f'(2 - h^2)}{2} = \frac{f'(2) + f'(2)}{2} = \frac{2f'(2)}{2} = f'(2) \] Given that \( f'(2) = 1 \): \[ \lim_{h \to 0} \frac{f(2 + h^2) - f(2 - h^2)}{2h^2} = 1 \] ### Final Answer Thus, the limit is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos

Similar Questions

Explore conceptually related problems

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

If f(x) is derivable at x=2 such that f(2)=2 and f'(2)=4 , then the value of lim_(h rarr0)(1)/(h^(2))(ln f(2+h^(2))-ln f(2-h^(2))) is equal to

If f'(a)=(1)/(4), then lim_(h rarr0)(f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)-h^(2))-f(a-h^(3)+h^(2)))=0 b.1 c.-2 d.none of these

lim_ (h rarr0) (e ^ (2x + 2h) -e ^ (2x)) / (h) =

MTG-WBJEE-DERIVATIVES -WB JEE PREVIOUS YEARS QUESTIONS
  1. If f '(2) =1, then lim ( h to 0 ) (f (2+ h ^(2)) -f ( 2- h ^(2)))/( 2h...

    Text Solution

    |

  2. Let f (x) = {{:( x ^(2) - 3x + 2 "," , x lt 2 ), ( x ^(3) - 6x ^(2) + ...

    Text Solution

    |

  3. Let f(x) = asin|x| + be^|x| is differentiable when

    Text Solution

    |

  4. Let R be the set of all real number and f: [-1,1] to R is difined by ...

    Text Solution

    |

  5. Suppose that f (x) is a differentiable function such that f'(x) is con...

    Text Solution

    |

  6. For all real values of a (0) , a (1), a (2), a (3) satisfying a (0)+ (...

    Text Solution

    |

  7. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |

  8. If y=f(x) is an odd differentiable function defined on (-oo,oo) such ...

    Text Solution

    |

  9. If f (x) = tan ^(-1) [ (log ((e )/( x ^(2))))/(log (ex ^(2)))] + tan ^...

    Text Solution

    |

  10. Consider the non-constant differentiable function f of one variable wh...

    Text Solution

    |

  11. if f(x)=log5 log3 x then f'(e) is equal to

    Text Solution

    |

  12. Let F (x) = e ^(x) , G (x) =e ^(-x) and H (x) = G (F(x)), where x is a...

    Text Solution

    |

  13. IF y = e ^(m sin ^(-1)x)) and (1- x ^(2)) (d ^(2) y )/( dx ^(2)) - x ...

    Text Solution

    |

  14. Let f (x) = {{:((x ^(p))/(( sin x ) ^(q) )"," , 0 lt x le (pi)/(2) ), ...

    Text Solution

    |

  15. For all twice differentiable functions f : R to R , with f(0) = f...

    Text Solution

    |

  16. Let f1(x)=e^x,f2(x)=e^(f1(x)),......,f(n+1)(x)=e^(fn(x)) for all n>=1....

    Text Solution

    |

  17. Let f : [a,b] to Rbe differentiable on [a,b]& k in R. Let f (a) =0 = f...

    Text Solution

    |

  18. Let f (x) gt 0 for all x and f'(x) exists for all x. If f is the inver...

    Text Solution

    |

  19. Applying Largrange's mean value theorem for a suitable function f (x) ...

    Text Solution

    |

  20. The number of points at which the function f(x) = max{a - x, a + x, b}...

    Text Solution

    |

  21. Let f be arry continuously differentiable function on [a,b] and twice ...

    Text Solution

    |