Home
Class 12
MATHS
If y = A/x - Bx ^(2), then x ^(2) (d ^(2...

If `y = A/x - Bx ^(2),` then `x ^(2) (d ^(2) y )/( dx ^(2)) =`

A

`2y `

B

`y ^(2)`

C

`y ^(3)`

D

`y ^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( x^2 \frac{d^2y}{dx^2} \) given that \( y = \frac{A}{x} - Bx^2 \). ### Step-by-Step Solution: 1. **Differentiate \( y \) to find \( \frac{dy}{dx} \)**: \[ y = \frac{A}{x} - Bx^2 \] We can rewrite \( \frac{A}{x} \) as \( Ax^{-1} \). Now, we differentiate: \[ \frac{dy}{dx} = \frac{d}{dx}(Ax^{-1}) - \frac{d}{dx}(Bx^2) \] Using the power rule: \[ \frac{dy}{dx} = -A x^{-2} - 2Bx \] Thus, we have: \[ \frac{dy}{dx} = -\frac{A}{x^2} - 2Bx \] 2. **Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \)**: Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{A}{x^2}\right) - \frac{d}{dx}(2Bx) \] For the first term, we apply the power rule again: \[ \frac{d}{dx}\left(-\frac{A}{x^2}\right) = -A \cdot (-2)x^{-3} = \frac{2A}{x^3} \] For the second term: \[ \frac{d}{dx}(2Bx) = 2B \] Therefore, we have: \[ \frac{d^2y}{dx^2} = \frac{2A}{x^3} - 2B \] 3. **Multiply \( \frac{d^2y}{dx^2} \) by \( x^2 \)**: Now we need to find \( x^2 \frac{d^2y}{dx^2} \): \[ x^2 \frac{d^2y}{dx^2} = x^2\left(\frac{2A}{x^3} - 2B\right) \] Distributing \( x^2 \): \[ x^2 \frac{d^2y}{dx^2} = \frac{2A x^2}{x^3} - 2B x^2 = \frac{2A}{x} - 2B x^2 \] 4. **Factor out the common term**: We can factor out 2 from the expression: \[ x^2 \frac{d^2y}{dx^2} = 2\left(\frac{A}{x} - Bx^2\right) \] 5. **Substitute back for \( y \)**: Notice that \( \frac{A}{x} - Bx^2 = y \): \[ x^2 \frac{d^2y}{dx^2} = 2y \] ### Final Answer: \[ x^2 \frac{d^2y}{dx^2} = 2y \]
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos

Similar Questions

Explore conceptually related problems

If y=|x-x^(2)|, then find (d^(2)y)/(dx^(2))

If y=x^(x) find d^(2)(y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)=

If y=A/x+Bx^2 , then x^2(d^2y)/(dx^2) =

If x=2at ^(2),y =4at ,then (d^(2)y)/(dx^(2) )=

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y = In ((x)/(a + bx))^(x), "then " x^(3)(d^(y))/(dx^(2)) is equal to

MTG-WBJEE-DERIVATIVES -WB JEE PREVIOUS YEARS QUESTIONS
  1. If y = A/x - Bx ^(2), then x ^(2) (d ^(2) y )/( dx ^(2)) =

    Text Solution

    |

  2. Let f (x) = {{:( x ^(2) - 3x + 2 "," , x lt 2 ), ( x ^(3) - 6x ^(2) + ...

    Text Solution

    |

  3. Let f(x) = asin|x| + be^|x| is differentiable when

    Text Solution

    |

  4. Let R be the set of all real number and f: [-1,1] to R is difined by ...

    Text Solution

    |

  5. Suppose that f (x) is a differentiable function such that f'(x) is con...

    Text Solution

    |

  6. For all real values of a (0) , a (1), a (2), a (3) satisfying a (0)+ (...

    Text Solution

    |

  7. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |

  8. If y=f(x) is an odd differentiable function defined on (-oo,oo) such ...

    Text Solution

    |

  9. If f (x) = tan ^(-1) [ (log ((e )/( x ^(2))))/(log (ex ^(2)))] + tan ^...

    Text Solution

    |

  10. Consider the non-constant differentiable function f of one variable wh...

    Text Solution

    |

  11. if f(x)=log5 log3 x then f'(e) is equal to

    Text Solution

    |

  12. Let F (x) = e ^(x) , G (x) =e ^(-x) and H (x) = G (F(x)), where x is a...

    Text Solution

    |

  13. IF y = e ^(m sin ^(-1)x)) and (1- x ^(2)) (d ^(2) y )/( dx ^(2)) - x ...

    Text Solution

    |

  14. Let f (x) = {{:((x ^(p))/(( sin x ) ^(q) )"," , 0 lt x le (pi)/(2) ), ...

    Text Solution

    |

  15. For all twice differentiable functions f : R to R , with f(0) = f...

    Text Solution

    |

  16. Let f1(x)=e^x,f2(x)=e^(f1(x)),......,f(n+1)(x)=e^(fn(x)) for all n>=1....

    Text Solution

    |

  17. Let f : [a,b] to Rbe differentiable on [a,b]& k in R. Let f (a) =0 = f...

    Text Solution

    |

  18. Let f (x) gt 0 for all x and f'(x) exists for all x. If f is the inver...

    Text Solution

    |

  19. Applying Largrange's mean value theorem for a suitable function f (x) ...

    Text Solution

    |

  20. The number of points at which the function f(x) = max{a - x, a + x, b}...

    Text Solution

    |

  21. Let f be arry continuously differentiable function on [a,b] and twice ...

    Text Solution

    |