Home
Class 12
MATHS
If (x)/(x ^(2) - 3x + 2) , find (d ^(2) ...

If `(x)/(x ^(2) - 3x + 2) ,` find `(d ^(2) y )/(dx ^(2)).`

A

`(2)/(( x -1)^(3)) + (2)/((x-2) ^(3))`

B

`(1)/(( x -1)^(3)) + (1)/((x-1) ^(3))`

C

`(2)/(( x -1)^(3)) + (2)/((x+2) ^(3))`

D

`(-2)/(( x -1)^(3)) + (4)/((x-2) ^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) of the function \(y = \frac{x}{x^2 - 3x + 2}\), we will follow these steps: ### Step 1: Simplify the function First, we simplify the denominator: \[ x^2 - 3x + 2 = (x - 1)(x - 2) \] Thus, we can rewrite the function as: \[ y = \frac{x}{(x - 1)(x - 2)} \] ### Step 2: Use partial fractions Next, we express \(y\) in terms of partial fractions: \[ \frac{x}{(x - 1)(x - 2)} = \frac{A}{x - 1} + \frac{B}{x - 2} \] Multiplying through by the denominator \((x - 1)(x - 2)\) gives: \[ x = A(x - 2) + B(x - 1) \] Expanding the right-hand side: \[ x = Ax - 2A + Bx - B = (A + B)x - (2A + B) \] Setting coefficients equal gives us the system: 1. \(A + B = 1\) 2. \(-2A - B = 0\) ### Step 3: Solve the system of equations From the first equation, we can express \(B\) in terms of \(A\): \[ B = 1 - A \] Substituting into the second equation: \[ -2A - (1 - A) = 0 \implies -2A - 1 + A = 0 \implies -A - 1 = 0 \implies A = -1 \] Substituting \(A\) back to find \(B\): \[ B = 1 - (-1) = 2 \] Thus, we have: \[ \frac{x}{(x - 1)(x - 2)} = \frac{-1}{x - 1} + \frac{2}{x - 2} \] ### Step 4: Differentiate to find the first derivative Now we differentiate \(y\): \[ y = -\frac{1}{x - 1} + \frac{2}{x - 2} \] Using the derivative formula \(\frac{d}{dx}\left(\frac{1}{u}\right) = -\frac{u'}{u^2}\): \[ \frac{dy}{dx} = -\left(-\frac{1}{(x - 1)^2}\right) + 2\left(-\frac{1}{(x - 2)^2}\right) \] Thus, \[ \frac{dy}{dx} = \frac{1}{(x - 1)^2} - \frac{2}{(x - 2)^2} \] ### Step 5: Differentiate again to find the second derivative Now we differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1}{(x - 1)^2}\right) - \frac{d}{dx}\left(\frac{2}{(x - 2)^2}\right) \] Using the derivative formula again: \[ \frac{d}{dx}\left(\frac{1}{(x - 1)^2}\right) = -\frac{-2}{(x - 1)^3} = \frac{2}{(x - 1)^3} \] \[ \frac{d}{dx}\left(\frac{2}{(x - 2)^2}\right) = -\frac{2 \cdot -2}{(x - 2)^3} = \frac{4}{(x - 2)^3} \] Thus, \[ \frac{d^2y}{dx^2} = \frac{2}{(x - 1)^3} - \frac{4}{(x - 2)^3} \] ### Final Answer The second derivative is: \[ \frac{d^2y}{dx^2} = \frac{2}{(x - 1)^3} - \frac{4}{(x - 2)^3} \]
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos

Similar Questions

Explore conceptually related problems

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=x^(x), find (d^(2)y)/(dx^(2))

If y=x^(x) find d^(2)(y)/(dx^(2))

If y=e^(4x) sin 3x , find (d^(2)y)/(dx^(2)).

If y=log(sin x), find (d^(2)y)/(dx^(2))

if y=tan^(-1)x, find (d^(2)y)/(dx^(2))

If y=|x-x^(2)|, then find (d^(2)y)/(dx^(2))

If y=cos ^(2) ((3x) /( 2))-sin ^(2) ((3x)/( 2) ),then (d^(2)y)/( dx^(2)) =

If y=x^(3)-(1)/(x^(3)) then find (d^(2)y)/(dx^(2))

If y=x^(3)+tan x then find (d^(2)y)/(dx^(2))

MTG-WBJEE-DERIVATIVES -WB JEE PREVIOUS YEARS QUESTIONS
  1. If (x)/(x ^(2) - 3x + 2) , find (d ^(2) y )/(dx ^(2)).

    Text Solution

    |

  2. Let f (x) = {{:( x ^(2) - 3x + 2 "," , x lt 2 ), ( x ^(3) - 6x ^(2) + ...

    Text Solution

    |

  3. Let f(x) = asin|x| + be^|x| is differentiable when

    Text Solution

    |

  4. Let R be the set of all real number and f: [-1,1] to R is difined by ...

    Text Solution

    |

  5. Suppose that f (x) is a differentiable function such that f'(x) is con...

    Text Solution

    |

  6. For all real values of a (0) , a (1), a (2), a (3) satisfying a (0)+ (...

    Text Solution

    |

  7. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |

  8. If y=f(x) is an odd differentiable function defined on (-oo,oo) such ...

    Text Solution

    |

  9. If f (x) = tan ^(-1) [ (log ((e )/( x ^(2))))/(log (ex ^(2)))] + tan ^...

    Text Solution

    |

  10. Consider the non-constant differentiable function f of one variable wh...

    Text Solution

    |

  11. if f(x)=log5 log3 x then f'(e) is equal to

    Text Solution

    |

  12. Let F (x) = e ^(x) , G (x) =e ^(-x) and H (x) = G (F(x)), where x is a...

    Text Solution

    |

  13. IF y = e ^(m sin ^(-1)x)) and (1- x ^(2)) (d ^(2) y )/( dx ^(2)) - x ...

    Text Solution

    |

  14. Let f (x) = {{:((x ^(p))/(( sin x ) ^(q) )"," , 0 lt x le (pi)/(2) ), ...

    Text Solution

    |

  15. For all twice differentiable functions f : R to R , with f(0) = f...

    Text Solution

    |

  16. Let f1(x)=e^x,f2(x)=e^(f1(x)),......,f(n+1)(x)=e^(fn(x)) for all n>=1....

    Text Solution

    |

  17. Let f : [a,b] to Rbe differentiable on [a,b]& k in R. Let f (a) =0 = f...

    Text Solution

    |

  18. Let f (x) gt 0 for all x and f'(x) exists for all x. If f is the inver...

    Text Solution

    |

  19. Applying Largrange's mean value theorem for a suitable function f (x) ...

    Text Solution

    |

  20. The number of points at which the function f(x) = max{a - x, a + x, b}...

    Text Solution

    |

  21. Let f be arry continuously differentiable function on [a,b] and twice ...

    Text Solution

    |