Home
Class 12
MATHS
If x = e ^(t ) sin t, y = e ^(t) cos t, ...

If `x = e ^(t ) sin t, y = e ^(t) cos t,` then `(d ^(2) y )/(dx ^(2))` at `t = pi` is

A

`2 e ^(pi)`

B

`1/2 e ^(pi)`

C

`(1)/(2e ^(pi ))`

D

`(2)/( e ^(pi))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{d^2y}{dx^2}\) at \(t = \pi\) for the given parametric equations \(x = e^t \sin t\) and \(y = e^t \cos t\), we will follow these steps: ### Step 1: Find \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\) 1. **Differentiate \(y\) with respect to \(t\)**: \[ y = e^t \cos t \] Using the product rule: \[ \frac{dy}{dt} = \frac{d}{dt}(e^t) \cos t + e^t \frac{d}{dt}(\cos t) = e^t \cos t - e^t \sin t = e^t (\cos t - \sin t) \] 2. **Differentiate \(x\) with respect to \(t\)**: \[ x = e^t \sin t \] Using the product rule: \[ \frac{dx}{dt} = \frac{d}{dt}(e^t) \sin t + e^t \frac{d}{dt}(\sin t) = e^t \sin t + e^t \cos t = e^t (\sin t + \cos t) \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule for parametric equations: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{e^t (\cos t - \sin t)}{e^t (\sin t + \cos t)} = \frac{\cos t - \sin t}{\sin t + \cos t} \] ### Step 3: Find \(\frac{d^2y}{dx^2}\) To find \(\frac{d^2y}{dx^2}\), we need to differentiate \(\frac{dy}{dx}\) with respect to \(x\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \] 1. **Differentiate \(\frac{dy}{dx}\) with respect to \(t\)**: \[ \frac{dy}{dx} = \frac{\cos t - \sin t}{\sin t + \cos t} \] Using the quotient rule: \[ \frac{d}{dt}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] where \(u = \cos t - \sin t\) and \(v = \sin t + \cos t\). - \( \frac{du}{dt} = -\sin t - \cos t \) - \( \frac{dv}{dt} = \cos t - \sin t \) Therefore, \[ \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{(\sin t + \cos t)(-\sin t - \cos t) - (\cos t - \sin t)(\cos t - \sin t)}{(\sin t + \cos t)^2} \] 2. **Find \(\frac{dt}{dx}\)**: \[ \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{e^t (\sin t + \cos t)} \] ### Step 4: Evaluate at \(t = \pi\) 1. **Calculate \(\frac{dy}{dx}\) at \(t = \pi\)**: \[ \frac{dy}{dx} = \frac{\cos(\pi) - \sin(\pi)}{\sin(\pi) + \cos(\pi)} = \frac{-1 - 0}{0 - 1} = 1 \] 2. **Calculate \(\frac{dx}{dt}\) at \(t = \pi\)**: \[ \frac{dx}{dt} = e^\pi (0 - 1) = -e^\pi \] Thus, \(\frac{dt}{dx} = -\frac{1}{e^\pi}\). 3. **Calculate \(\frac{d^2y}{dx^2}\) at \(t = \pi\)**: Substitute into the expression for \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \left(\text{Evaluate the derivative at } t = \pi\right) \cdot \left(-\frac{1}{e^\pi}\right) \] After performing the calculations, we find: \[ \frac{d^2y}{dx^2} = \frac{2}{e^\pi} \] ### Final Answer: \[ \frac{d^2y}{dx^2} \text{ at } t = \pi \text{ is } \frac{2}{e^\pi} \]
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos

Similar Questions

Explore conceptually related problems

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is

If x=e^(sin 3t) y= e ^(cos , 3t) ,then (dy)/(dx)=

x = a (cos t + sin t), y = a (sin t-cos t)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If x=e^t sin t , y=e^t cos t , t is a parameter , then (d^2y)/(dx^2) at (1,1) is equal to

MTG-WBJEE-DERIVATIVES -WB JEE PREVIOUS YEARS QUESTIONS
  1. If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at ...

    Text Solution

    |

  2. Let f (x) = {{:( x ^(2) - 3x + 2 "," , x lt 2 ), ( x ^(3) - 6x ^(2) + ...

    Text Solution

    |

  3. Let f(x) = asin|x| + be^|x| is differentiable when

    Text Solution

    |

  4. Let R be the set of all real number and f: [-1,1] to R is difined by ...

    Text Solution

    |

  5. Suppose that f (x) is a differentiable function such that f'(x) is con...

    Text Solution

    |

  6. For all real values of a (0) , a (1), a (2), a (3) satisfying a (0)+ (...

    Text Solution

    |

  7. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |

  8. If y=f(x) is an odd differentiable function defined on (-oo,oo) such ...

    Text Solution

    |

  9. If f (x) = tan ^(-1) [ (log ((e )/( x ^(2))))/(log (ex ^(2)))] + tan ^...

    Text Solution

    |

  10. Consider the non-constant differentiable function f of one variable wh...

    Text Solution

    |

  11. if f(x)=log5 log3 x then f'(e) is equal to

    Text Solution

    |

  12. Let F (x) = e ^(x) , G (x) =e ^(-x) and H (x) = G (F(x)), where x is a...

    Text Solution

    |

  13. IF y = e ^(m sin ^(-1)x)) and (1- x ^(2)) (d ^(2) y )/( dx ^(2)) - x ...

    Text Solution

    |

  14. Let f (x) = {{:((x ^(p))/(( sin x ) ^(q) )"," , 0 lt x le (pi)/(2) ), ...

    Text Solution

    |

  15. For all twice differentiable functions f : R to R , with f(0) = f...

    Text Solution

    |

  16. Let f1(x)=e^x,f2(x)=e^(f1(x)),......,f(n+1)(x)=e^(fn(x)) for all n>=1....

    Text Solution

    |

  17. Let f : [a,b] to Rbe differentiable on [a,b]& k in R. Let f (a) =0 = f...

    Text Solution

    |

  18. Let f (x) gt 0 for all x and f'(x) exists for all x. If f is the inver...

    Text Solution

    |

  19. Applying Largrange's mean value theorem for a suitable function f (x) ...

    Text Solution

    |

  20. The number of points at which the function f(x) = max{a - x, a + x, b}...

    Text Solution

    |

  21. Let f be arry continuously differentiable function on [a,b] and twice ...

    Text Solution

    |