Home
Class 12
MATHS
If sqrt (x + y ) - sqrt (y -x) =c, then ...

If `sqrt (x + y ) - sqrt (y -x) =c,` then ` (d ^(2)y )/( dx ^(2))` equals

A

`(2)/(c^(2))`

B

`(-2)/(c ^(2))`

C

`(2)/(c )`

D

`(-2)/(c )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation: \[ \sqrt{x + y} - \sqrt{y - x} = c \] ### Step 1: Square both sides We square both sides to eliminate the square roots: \[ (\sqrt{x + y} - \sqrt{y - x})^2 = c^2 \] Expanding the left side using the formula \((a - b)^2 = a^2 - 2ab + b^2\): \[ (x + y) + (y - x) - 2\sqrt{(x + y)(y - x)} = c^2 \] ### Step 2: Simplify the equation Now, we simplify the left side: \[ y + y - 2\sqrt{(x + y)(y - x)} = c^2 \] This simplifies to: \[ 2y - 2\sqrt{(x + y)(y - x)} = c^2 \] ### Step 3: Rearrange the equation Rearranging gives us: \[ 2\sqrt{(x + y)(y - x)} = 2y - c^2 \] Dividing both sides by 2: \[ \sqrt{(x + y)(y - x)} = y - \frac{c^2}{2} \] ### Step 4: Square again Now, we square both sides again: \[ (x + y)(y - x) = \left(y - \frac{c^2}{2}\right)^2 \] Expanding both sides: \[ xy - x^2 + y^2 - xy = y^2 - c^2y + \frac{c^4}{4} \] This simplifies to: \[ -x^2 = -c^2y + \frac{c^4}{4} \] ### Step 5: Rearranging Rearranging gives us: \[ x^2 = c^2y - \frac{c^4}{4} \] ### Step 6: Differentiate with respect to x Now we differentiate both sides with respect to \(x\): \[ 2x = c^2 \frac{dy}{dx} \] ### Step 7: Solve for \(\frac{dy}{dx}\) Rearranging gives: \[ \frac{dy}{dx} = \frac{2x}{c^2} \] ### Step 8: Differentiate again to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\) again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{2x}{c^2}\right) \] Since \(c^2\) is a constant, we have: \[ \frac{d^2y}{dx^2} = \frac{2}{c^2} \] ### Final Answer Thus, the second derivative \(\frac{d^2y}{dx^2}\) is: \[ \frac{d^2y}{dx^2} = \frac{2}{c^2} \]
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

if sqrt(y+x)+sqrt(y-x)=c then find (dy)/(dx)

If sqrt(y-x)+sqrt(y+x)=1" then "(d^(3)y)/(dx^(3)) at x=1 is equal to

If y=log(x+sqrt(x^(2) +a^(2))) , then (d^(2)y)/(dx^(2)) , is equal to

If y=sqrt((1-x)/(1+x)) , then (1-x^(2))(dy)/(dx)+y is equal to

If sqrt(y+x)+sqrt(y-x)=c, where cne0 , then (dy)/(dx) has the value equal to

If y= log [x + sqrt(9 + x^(2))], "then" (dy)/(dx) is equal to

MTG-WBJEE-DERIVATIVES -WB JEE PREVIOUS YEARS QUESTIONS
  1. If sqrt (x + y ) - sqrt (y -x) =c, then (d ^(2)y )/( dx ^(2)) equals

    Text Solution

    |

  2. Let f (x) = {{:( x ^(2) - 3x + 2 "," , x lt 2 ), ( x ^(3) - 6x ^(2) + ...

    Text Solution

    |

  3. Let f(x) = asin|x| + be^|x| is differentiable when

    Text Solution

    |

  4. Let R be the set of all real number and f: [-1,1] to R is difined by ...

    Text Solution

    |

  5. Suppose that f (x) is a differentiable function such that f'(x) is con...

    Text Solution

    |

  6. For all real values of a (0) , a (1), a (2), a (3) satisfying a (0)+ (...

    Text Solution

    |

  7. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |

  8. If y=f(x) is an odd differentiable function defined on (-oo,oo) such ...

    Text Solution

    |

  9. If f (x) = tan ^(-1) [ (log ((e )/( x ^(2))))/(log (ex ^(2)))] + tan ^...

    Text Solution

    |

  10. Consider the non-constant differentiable function f of one variable wh...

    Text Solution

    |

  11. if f(x)=log5 log3 x then f'(e) is equal to

    Text Solution

    |

  12. Let F (x) = e ^(x) , G (x) =e ^(-x) and H (x) = G (F(x)), where x is a...

    Text Solution

    |

  13. IF y = e ^(m sin ^(-1)x)) and (1- x ^(2)) (d ^(2) y )/( dx ^(2)) - x ...

    Text Solution

    |

  14. Let f (x) = {{:((x ^(p))/(( sin x ) ^(q) )"," , 0 lt x le (pi)/(2) ), ...

    Text Solution

    |

  15. For all twice differentiable functions f : R to R , with f(0) = f...

    Text Solution

    |

  16. Let f1(x)=e^x,f2(x)=e^(f1(x)),......,f(n+1)(x)=e^(fn(x)) for all n>=1....

    Text Solution

    |

  17. Let f : [a,b] to Rbe differentiable on [a,b]& k in R. Let f (a) =0 = f...

    Text Solution

    |

  18. Let f (x) gt 0 for all x and f'(x) exists for all x. If f is the inver...

    Text Solution

    |

  19. Applying Largrange's mean value theorem for a suitable function f (x) ...

    Text Solution

    |

  20. The number of points at which the function f(x) = max{a - x, a + x, b}...

    Text Solution

    |

  21. Let f be arry continuously differentiable function on [a,b] and twice ...

    Text Solution

    |