Home
Class 12
MATHS
If y = tan ^(-1) ((sqrt(1 + x ^(2) )-1 ...

If ` y = tan ^(-1) ((sqrt(1 + x ^(2) )-1 )/( x ) )`, then ` y '(1)=`

A

`1//4`

B

`1//2`

C

`-1//4`

D

`-1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( y' \) when \( y = \tan^{-1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) \), we will follow these steps: ### Step 1: Simplify the Expression We start with the expression for \( y \): \[ y = \tan^{-1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) \] Let \( x = \tan(\theta) \). Then, we have: \[ \sqrt{1 + x^2} = \sqrt{1 + \tan^2(\theta)} = \sec(\theta) \] Thus, we can rewrite \( y \) as: \[ y = \tan^{-1} \left( \frac{\sec(\theta) - 1}{\tan(\theta)} \right) \] ### Step 2: Rewrite in Terms of Sine and Cosine Using the identities for secant and tangent: \[ y = \tan^{-1} \left( \frac{\sec(\theta) - 1}{\tan(\theta)} \right) = \tan^{-1} \left( \frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}} \right) \] This simplifies to: \[ y = \tan^{-1} \left( \frac{1 - \cos(\theta)}{\sin(\theta)} \right) \] ### Step 3: Use Half-Angle Identities Using the half-angle identities: \[ 1 - \cos(\theta) = 2 \sin^2\left(\frac{\theta}{2}\right) \quad \text{and} \quad \sin(\theta) = 2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \] We can rewrite \( y \): \[ y = \tan^{-1} \left( \frac{2 \sin^2\left(\frac{\theta}{2}\right)}{2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)} \right) = \tan^{-1} \left( \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} \right) = \frac{\theta}{2} \] ### Step 4: Substitute Back for \( \theta \) Since \( \theta = \tan^{-1}(x) \): \[ y = \frac{1}{2} \tan^{-1}(x) \] ### Step 5: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ y' = \frac{1}{2} \cdot \frac{1}{1 + x^2} \] ### Step 6: Evaluate at \( x = 1 \) Now we need to find \( y'(1) \): \[ y'(1) = \frac{1}{2} \cdot \frac{1}{1 + 1^2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \] ### Final Answer Thus, the value of \( y'(1) \) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos

Similar Questions

Explore conceptually related problems

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) , then find (dy)/(dx) when -1lexle1.

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

If y= tan ^(-1) sqrt (( 1 - sin x)/( 1 + sin x)) , then the vluae of (dy)/(dx) at x = pi /2 is

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=tan^(-1)((sqrt(x)-x)/(1+x^((3)/(2)))), then y'(1) is:

MTG-WBJEE-DERIVATIVES -WB JEE PREVIOUS YEARS QUESTIONS
  1. If y = tan ^(-1) ((sqrt(1 + x ^(2) )-1 )/( x ) ), then y '(1)=

    Text Solution

    |

  2. Let f (x) = {{:( x ^(2) - 3x + 2 "," , x lt 2 ), ( x ^(3) - 6x ^(2) + ...

    Text Solution

    |

  3. Let f(x) = asin|x| + be^|x| is differentiable when

    Text Solution

    |

  4. Let R be the set of all real number and f: [-1,1] to R is difined by ...

    Text Solution

    |

  5. Suppose that f (x) is a differentiable function such that f'(x) is con...

    Text Solution

    |

  6. For all real values of a (0) , a (1), a (2), a (3) satisfying a (0)+ (...

    Text Solution

    |

  7. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |

  8. If y=f(x) is an odd differentiable function defined on (-oo,oo) such ...

    Text Solution

    |

  9. If f (x) = tan ^(-1) [ (log ((e )/( x ^(2))))/(log (ex ^(2)))] + tan ^...

    Text Solution

    |

  10. Consider the non-constant differentiable function f of one variable wh...

    Text Solution

    |

  11. if f(x)=log5 log3 x then f'(e) is equal to

    Text Solution

    |

  12. Let F (x) = e ^(x) , G (x) =e ^(-x) and H (x) = G (F(x)), where x is a...

    Text Solution

    |

  13. IF y = e ^(m sin ^(-1)x)) and (1- x ^(2)) (d ^(2) y )/( dx ^(2)) - x ...

    Text Solution

    |

  14. Let f (x) = {{:((x ^(p))/(( sin x ) ^(q) )"," , 0 lt x le (pi)/(2) ), ...

    Text Solution

    |

  15. For all twice differentiable functions f : R to R , with f(0) = f...

    Text Solution

    |

  16. Let f1(x)=e^x,f2(x)=e^(f1(x)),......,f(n+1)(x)=e^(fn(x)) for all n>=1....

    Text Solution

    |

  17. Let f : [a,b] to Rbe differentiable on [a,b]& k in R. Let f (a) =0 = f...

    Text Solution

    |

  18. Let f (x) gt 0 for all x and f'(x) exists for all x. If f is the inver...

    Text Solution

    |

  19. Applying Largrange's mean value theorem for a suitable function f (x) ...

    Text Solution

    |

  20. The number of points at which the function f(x) = max{a - x, a + x, b}...

    Text Solution

    |

  21. Let f be arry continuously differentiable function on [a,b] and twice ...

    Text Solution

    |