Home
Class 12
MATHS
Find the shortest distance between the l...

Find the shortest distance between the lines given by
`(x-8)/(3)=(y+9)/(-1)=(z-10)/(7)and(x-1)/(3)=(y-2)/(8)=(z-5)/(-5)`

A

`(68)/(sqrt514)` units

B

`(86)/(sqrt541)` units

C

`(206)/(sqrt514)` units

D

`(321)/(sqrt514)` units

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we can follow these steps: ### Step 1: Write the lines in vector form The first line is given by: \[ \frac{x-8}{3} = \frac{y+9}{-1} = \frac{z-10}{7} \] This can be expressed in vector form as: \[ \mathbf{r_1} = \begin{pmatrix} 8 \\ -9 \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix} \] where \(\begin{pmatrix} 8 \\ -9 \\ 10 \end{pmatrix}\) is a point on the line and \(\begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}\) is the direction vector. The second line is given by: \[ \frac{x-1}{3} = \frac{y-2}{8} = \frac{z-5}{-5} \] This can be expressed in vector form as: \[ \mathbf{r_2} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 8 \\ -5 \end{pmatrix} \] where \(\begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}\) is a point on the line and \(\begin{pmatrix} 3 \\ 8 \\ -5 \end{pmatrix}\) is the direction vector. ### Step 2: Identify the points and direction vectors From the vector forms, we have: - For Line 1: - Point \(A_1 = \begin{pmatrix} 8 \\ -9 \\ 10 \end{pmatrix}\) - Direction vector \(B_1 = \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}\) - For Line 2: - Point \(A_2 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}\) - Direction vector \(B_2 = \begin{pmatrix} 3 \\ 8 \\ -5 \end{pmatrix}\) ### Step 3: Calculate \(A_2 - A_1\) Now we compute: \[ A_2 - A_1 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} - \begin{pmatrix} 8 \\ -9 \\ 10 \end{pmatrix} = \begin{pmatrix} 1 - 8 \\ 2 - (-9) \\ 5 - 10 \end{pmatrix} = \begin{pmatrix} -7 \\ 11 \\ -5 \end{pmatrix} \] ### Step 4: Compute the cross product \(B_1 \times B_2\) To find the cross product \(B_1 \times B_2\): \[ B_1 = \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 3 \\ 8 \\ -5 \end{pmatrix} \] Using the determinant: \[ B_1 \times B_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -1 & 7 \\ 3 & 8 & -5 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i}((-1)(-5) - (7)(8)) - \mathbf{j}((3)(-5) - (7)(3)) + \mathbf{k}((3)(8) - (-1)(3)) \] \[ = \mathbf{i}(5 - 56) - \mathbf{j}(-15 - 21) + \mathbf{k}(24 + 3) \] \[ = \mathbf{i}(-51) + \mathbf{j}(36) + \mathbf{k}(27) = \begin{pmatrix} -51 \\ 36 \\ 27 \end{pmatrix} \] ### Step 5: Calculate the magnitude of \(B_1 \times B_2\) Now, we find the magnitude: \[ |B_1 \times B_2| = \sqrt{(-51)^2 + 36^2 + 27^2} = \sqrt{2601 + 1296 + 729} = \sqrt{4626} \] ### Step 6: Calculate the dot product \((A_2 - A_1) \cdot (B_1 \times B_2)\) Now we compute the dot product: \[ (A_2 - A_1) \cdot (B_1 \times B_2) = \begin{pmatrix} -7 \\ 11 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} -51 \\ 36 \\ 27 \end{pmatrix} \] \[ = (-7)(-51) + (11)(36) + (-5)(27) = 357 + 396 - 135 = 618 \] ### Step 7: Calculate the shortest distance Finally, the shortest distance \(d\) between the two lines is given by: \[ d = \frac{|(A_2 - A_1) \cdot (B_1 \times B_2)|}{|B_1 \times B_2|} = \frac{618}{\sqrt{4626}} \] ### Step 8: Simplify the expression Calculating the numerical value: \[ d \approx \frac{618}{68.0} \approx 9.1 \] ### Final Answer The shortest distance between the two lines is approximately \(9.1\).
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE WORKOUT (CATEGORY 2 : Single Option Correct Type)|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE WORKOUT (CATEGORY 3 : One or more than One Option Correct Type )|15 Videos
  • STRAIGHT LINES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines given by (x-2)/(3)=(y-5)/(-2)=(z-1)/(1)and(x+1)/(2)=(y+2)/(-6)=(z-3)/(1)

Find the shortest distance between the lines (x-6)/(3)=(y-7)/(-1)=(z-4)/(1) and (x)/(-3)=(y-9)/(2)=(z-2)/(4)

Find the shortest distance between the lines (x-1)/(2)=(y-2)/(3)=(z-3)/(4) and (x-2)/(3)=(y-4)/(4)=(z-5)/(5)

The shortest distance between the lines (x-2)/(3)=(y+3)/(4)=(z-1)/(5) and (x-5)/(1)=(y-1)/(2)=(z-6)/(3) , is

Find the shortest distance between the lines (x-23)/(-6) = (y-19)/(-4) = (z-25)/(3) and (x-12)/(-9) = (y-1)/(4)= (z-5)/(2).

Find the magnitude of the shortest distance between the lines (x)/(2)=(y)/(-3)=(z)/(1) and (x-2)/(3)=(y-1)/(-5)=(z+2)/(2) .

Equation of the line of the shortest distance between the lines (x)/(1)=(y)/(-1)=(z)/(1) and (x-1)/(0)=(y+1)/(-2)=(z)/(1) is:

The shortest distance between the lines (x-3)/(2) = (y +15)/(-7) = (z-9)/(5) and (x+1)/(2) = (y-1)/(1) = (z-9)/(-3) is :