Home
Class 12
MATHS
Let veca,vecb be the position vectors of...

Let `veca,vecb` be the position vectors of points A and B with respect to and `|veca|=a,|vecb|=b`. The points Cand D divide AB internally and externally in the ratio 2: 3 respectively. If `vec(OC)andvec(OD)` are perpendicular, then

A

`9a^(2)=4b^(2)`

B

`4a^(2)=9b^(2)`

C

9a=4b

D

4a=9b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the magnitudes of the position vectors of points A and B given that points C and D divide the line segment AB in certain ratios and that the vectors OC and OD are perpendicular. ### Step-by-Step Solution: 1. **Identify the Position Vectors**: Let the position vectors of points A and B be represented as: \[ \vec{a} \quad \text{and} \quad \vec{b} \] Given that \( |\vec{a}| = a \) and \( |\vec{b}| = b \). 2. **Find the Position Vector of Point C**: Point C divides the line segment AB internally in the ratio 2:3. The formula for the position vector of a point dividing a line segment internally in the ratio \( m:n \) is: \[ \vec{C} = \frac{m\vec{b} + n\vec{a}}{m+n} \] For our case, \( m = 2 \) and \( n = 3 \): \[ \vec{C} = \frac{2\vec{b} + 3\vec{a}}{2 + 3} = \frac{2\vec{b} + 3\vec{a}}{5} \] 3. **Find the Position Vector of Point D**: Point D divides the line segment AB externally in the ratio 2:3. The formula for the position vector of a point dividing a line segment externally in the ratio \( m:n \) is: \[ \vec{D} = \frac{m\vec{b} - n\vec{a}}{m-n} \] For our case, \( m = 2 \) and \( n = 3 \): \[ \vec{D} = \frac{2\vec{b} - 3\vec{a}}{2 - 3} = \frac{2\vec{b} - 3\vec{a}}{-1} = 3\vec{a} - 2\vec{b} \] 4. **Condition for Perpendicularity**: The vectors \( \vec{C} \) and \( \vec{D} \) are perpendicular, which means: \[ \vec{C} \cdot \vec{D} = 0 \] Substituting the expressions for \( \vec{C} \) and \( \vec{D} \): \[ \left(\frac{2\vec{b} + 3\vec{a}}{5}\right) \cdot (3\vec{a} - 2\vec{b}) = 0 \] 5. **Expanding the Dot Product**: Expanding the dot product: \[ \frac{1}{5} \left( (2\vec{b}) \cdot (3\vec{a}) + (3\vec{a}) \cdot (3\vec{a}) - (2\vec{b}) \cdot (2\vec{b}) \right) = 0 \] Simplifying: \[ \frac{1}{5} \left( 6 \vec{a} \cdot \vec{b} + 9 \vec{a} \cdot \vec{a} - 4 \vec{b} \cdot \vec{b} \right) = 0 \] This leads to: \[ 6 \vec{a} \cdot \vec{b} + 9 |\vec{a}|^2 - 4 |\vec{b}|^2 = 0 \] 6. **Substituting Magnitudes**: Using \( |\vec{a}| = a \) and \( |\vec{b}| = b \): \[ 6 (\vec{a} \cdot \vec{b}) + 9a^2 - 4b^2 = 0 \] 7. **Rearranging the Equation**: Rearranging gives: \[ 9a^2 = 4b^2 - 6 (\vec{a} \cdot \vec{b}) \] ### Final Result: The final equation we derived is: \[ 9a^2 = 4b^2 \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE WORKOUT (CATEGORY 2 : Single Option Correct Type)|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE WORKOUT (CATEGORY 3 : One or more than One Option Correct Type )|15 Videos
  • STRAIGHT LINES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

Find the position vector of the points which divide the join of the points 5veca-4vecb and 4veca-5vecb internally and externally in the ratio 4:3 respectively.

Find the position vector of the point which divides the join of the points (2veca - 3vecb) and (3veca - 2vecb) (i) internally and (ii) externally in the ratio 2 : 3 .

The position vectors of two points A and B are 3veca+2vecb and 2veca-vecb respectively. Find the vector vec(AB)

The position vector of two points A and B are 6veca+2vecb and veca-3vecb. If point C divides AB in the ratio 3:2 then show that the position vector of C is 3veca-vecb

find the positio vectors of the ponts which divide the join of points 2veca-3vecb and 3veca-2vecb internally and externallyin the ratio 2:3.

veca,vecb,vecc are the position vectors of vertices A, B, C respectively of a paralleloram, ABCD, ifnd the position vector of D.

veca, vecb, vecc are the position vectors of the three points A,B,C respectiveluy. The point P divides the ilne segment AB internally in the ratio 2:1 and the point Q divides the lines segment BC externally in the ratio 3:2 show that 3vec)PQ) = -veca-8vecb+9vecc .

If vectors drawn from the origin to the point A,B, and C are respectively veca,vecb and vec4a-vec3b then find vecAC .

The position vector of the point which divides the join of points 2veca-3vecbandveca+vecb in the ratio 3:1, is