Home
Class 12
MATHS
Find the vector equation of the plane pa...

Find the vector equation of the plane passing through the points (1, 1, 1), (2, 4, 3) and (5,9,7).

A

`vecr.(hati+hatj+2hatk)=0`

B

`vecr.(hati+hatj-2hatk)=2`

C

`vecr.(hati+hatj-2hatk)=0`

D

`vecr.(hati-hatj-2hatk)=4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector equation of the plane passing through the points \( A(1, 1, 1) \), \( B(2, 4, 3) \), and \( C(5, 9, 7) \), we can follow these steps: ### Step 1: Define the position vectors Let: - \( \vec{A} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \) - \( \vec{B} = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix} \) - \( \vec{C} = \begin{pmatrix} 5 \\ 9 \\ 7 \end{pmatrix} \) ### Step 2: Find the direction vectors Calculate the vectors \( \vec{AB} \) and \( \vec{AC} \): \[ \vec{AB} = \vec{B} - \vec{A} = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \] \[ \vec{AC} = \vec{C} - \vec{A} = \begin{pmatrix} 5 \\ 9 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 6 \end{pmatrix} \] ### Step 3: Calculate the normal vector using the cross product The normal vector \( \vec{n} \) of the plane can be found by taking the cross product of \( \vec{AB} \) and \( \vec{AC} \): \[ \vec{n} = \vec{AB} \times \vec{AC} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \times \begin{pmatrix} 4 \\ 8 \\ 6 \end{pmatrix} \] Calculating the determinant: \[ \vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & 2 \\ 4 & 8 & 6 \end{vmatrix} \] Expanding the determinant: \[ \vec{n} = \hat{i}(3 \cdot 6 - 2 \cdot 8) - \hat{j}(1 \cdot 6 - 2 \cdot 4) + \hat{k}(1 \cdot 8 - 3 \cdot 4) \] \[ = \hat{i}(18 - 16) - \hat{j}(6 - 8) + \hat{k}(8 - 12) \] \[ = \hat{i}(2) - \hat{j}(-2) + \hat{k}(-4) \] \[ = \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix} \] ### Step 4: Write the vector equation of the plane The vector equation of the plane can be expressed as: \[ \vec{r} - \vec{A} \cdot \vec{n} = 0 \] Substituting \( \vec{A} \) and \( \vec{n} \): \[ \vec{r} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix} = 0 \] This can be rewritten as: \[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix} = 0 \] \[ \Rightarrow 2(x - 1) + 2(y - 1) - 4(z - 1) = 0 \] Simplifying gives: \[ 2x + 2y - 4z = 0 \] ### Final Answer The vector equation of the plane is: \[ 2x + 2y - 4z = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE WORKOUT (CATEGORY 2 : Single Option Correct Type)|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE WORKOUT (CATEGORY 3 : One or more than One Option Correct Type )|15 Videos
  • STRAIGHT LINES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

Find the vector equation of the plane passing through the points (1, 1, -1), (6, 4, -5) and (-4, -2, 3).

The vector equation of the plane passing through the points (1,-2,1),(2,-1,-3) and (0,1,5) is

Find the vector equation of the plane passing through the points (1,1,0),(1,2,1) and (-2,2,-1)

Find the vector equation of the plane passing through the point A(1, 0, 1), B(1,-1,1) and C (4,-3,2)

Find the vector equation of the plane passing through the points (6,-1,1),(5,1,2) and (1,-5,-4) . Also find the Cartesian equation of the plane.

Find the vector equation for the line passing through the points (-1,0,2) and

Find the vector equation of the plane passing through the points A(2,2,-1),B(3,4,1) and C(7,0,6) Also,find the Cartesian equation of the plane.

Find the vector equation of the plane passing through the points (0,0,0),(0,5,0) ,and (2,0,1) .

The equation of the plane passing through the points (1,2,3), (-1,4,2) and (3,1,1) is

vector equation of the plane passing through the points (1,-2,5),(0,-5,-1) and (-3,5,0) is