Home
Class 12
MATHS
If the lines (x-3)/(2)=(y+1)/(3)=(z-2)/(...

If the lines `(x-3)/(2)=(y+1)/(3)=(z-2)/(4)and(x-4)/(2)=(y-k)/(2)=(z)/(1)` intersect, then find the value of k.

A

`(9)/(2)`

B

`(2)/(9)`

C

`-(3)/(2)`

D

`-(5)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the lines \[ \frac{x-3}{2} = \frac{y+1}{3} = \frac{z-2}{4} \] and \[ \frac{x-4}{2} = \frac{y-k}{2} = \frac{z}{1} \] intersect, we will follow these steps: ### Step 1: Parametrize the lines For the first line, let \[ \frac{x-3}{2} = \frac{y+1}{3} = \frac{z-2}{4} = \lambda \] From this, we can express \( x, y, z \) in terms of \( \lambda \): - \( x = 2\lambda + 3 \) - \( y = 3\lambda - 1 \) - \( z = 4\lambda + 2 \) For the second line, let \[ \frac{x-4}{2} = \frac{y-k}{2} = \frac{z}{1} = \alpha \] From this, we can express \( x, y, z \) in terms of \( \alpha \): - \( x = 2\alpha + 4 \) - \( y = 2\alpha + k \) - \( z = \alpha \) ### Step 2: Set the coordinates equal Since the lines intersect, the coordinates must be equal at the point of intersection: 1. \( 2\lambda + 3 = 2\alpha + 4 \) (for \( x \)) 2. \( 3\lambda - 1 = 2\alpha + k \) (for \( y \)) 3. \( 4\lambda + 2 = \alpha \) (for \( z \)) ### Step 3: Solve for \( \alpha \) in terms of \( \lambda \) From the third equation: \[ \alpha = 4\lambda + 2 \] ### Step 4: Substitute \( \alpha \) into the first equation Substituting \( \alpha \) into the first equation: \[ 2\lambda + 3 = 2(4\lambda + 2) + 4 \] Expanding the right side: \[ 2\lambda + 3 = 8\lambda + 4 + 4 \] \[ 2\lambda + 3 = 8\lambda + 8 \] Rearranging gives: \[ 2\lambda - 8\lambda = 8 - 3 \] \[ -6\lambda = 5 \implies \lambda = -\frac{5}{6} \] ### Step 5: Substitute \( \lambda \) back to find \( \alpha \) Now substituting \( \lambda \) back into the equation for \( \alpha \): \[ \alpha = 4\left(-\frac{5}{6}\right) + 2 = -\frac{20}{6} + 2 = -\frac{20}{6} + \frac{12}{6} = -\frac{8}{6} = -\frac{4}{3} \] ### Step 6: Substitute \( \lambda \) and \( \alpha \) into the second equation Now substitute \( \lambda \) and \( \alpha \) into the second equation: \[ 3\left(-\frac{5}{6}\right) - 1 = 2\left(-\frac{4}{3}\right) + k \] Calculating the left side: \[ -\frac{15}{6} - 1 = -\frac{15}{6} - \frac{6}{6} = -\frac{21}{6} \] Now the equation becomes: \[ -\frac{21}{6} = -\frac{8}{3} + k \] ### Step 7: Solve for \( k \) Convert \(-\frac{8}{3}\) to sixths: \[ -\frac{8}{3} = -\frac{16}{6} \] So the equation is: \[ -\frac{21}{6} = -\frac{16}{6} + k \] Rearranging gives: \[ k = -\frac{21}{6} + \frac{16}{6} = -\frac{5}{6} \] ### Final Answer Thus, the value of \( k \) is \[ \boxed{-\frac{5}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE WORKOUT (CATEGORY 2 : Single Option Correct Type)|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    MTG-WBJEE|Exercise WE JEE WORKOUT (CATEGORY 3 : One or more than One Option Correct Type )|15 Videos
  • STRAIGHT LINES

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|28 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

If the lines (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect,then find the value of k .

If the lines (x-1)/(k)=(y+1)/(3)=(z-1)/(4)and(x-3)/(1)=(2y-9)/(2k)=(z)/(1) intersect, then find the value of k

if the lines (x-1)/(2)=(y-1)/(3)=(z-1)/(4) and (x-3)/(2)=(y-k)/(1)=(z)/(1) intersect then the value of k is (a) (1)/(3) (b) (2)/(3)(c)-(1)/(3) (d) 1

If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect, then k is equal to

If the lines (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect,then k is equal to (1)-1(2)(2)/(9)(3)(9)/(2)(4)0

If lines : (x -1)/(2) = (y + 1)/(3) = (z - 1)/(4) and (x - 3)/(1) = (y - k)/(2) = (z)/(1) intersect, then find the value of 'k' and hence find the equation of the plane containing these lines.

If the lines (x-1)/(2)=(y-2)/(3)=(z-a)/(4) and (x-4)/(5)=(y-1)/(2)= are the skew lines then find the value of a.

If the lines (x+1)/(2)=(y-1)/(1)=(z+1)/(3)and(x+2)/(2)=(y-k)/(3)=(z)/(4) are coplanar, then the value of k is

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then