Home
Class 12
MATHS
" 6.If "(log x)/(b-c)=(log y)/(c-a)=(log...

" 6.If "(log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b)" then "xyz=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then which of the following is/are true?

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)*b^(c+a)*c^(a+b)=

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)+b^(c+a)+c^(a+b) is

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then a^(a)*b^(b)*c^(c)=

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that (a^(a))(b^(c))(c^(c))=1

If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=