Home
Class 12
MATHS
The minimum value of sqrt((A^2+ A+1)(B^...

The minimum value of `sqrt((A^2+ A+1)(B^2+B+1)(C^2+ C+1)(D^2 +D+1))/(ABCD)` is _______(where A,B,C,D) are positive real numbers )

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of ((A^(2) +A+1) (B^(2) +B+1) (C^(2) +C+1 )(D^(2) +D+1 ))/(ABCD) where A,B,C,D gt 0 is :

The minimum value of ((A^(2)+A+1)(B^(2)+B+1)(C^(2)+C+1)(D^(2)+D+1))/(BACD) , wher A,B,C,D are positive

The minimum value of ((A^(2) +A+1) (B^(2) +B+1) (C^(2) +C+1 ))/(ABCD) where A,B,C,D gt 0 is :

The minimum value ((A^(2)+A+1)(B^(2)+B+1)(C^(2)+C+1)(D^(2)+D+1))/(BACD) where A,B,C,D are positive

Consider the expression ((a^2 + a + 1)(b^2 + b + 1) (c^2 + c + 1)(d^2 + d+ 1)(e^2 + e + 1))/(abcde) where a, b, c, d and e are positive numbers. The minimum value of the expression is

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

The minimum value of an expression (a+b+c+d)((3)/(b+c+d)+(3)/(c+d+a)+(3)/(d+a+b)+(3)/(a+b+c)) is,where a,b,c and d are positive numbers.

If a, b and c are non-coplanar vectors and if d is such that d = (1)/(x) (a + b + c) and a = (1)/(y) (b + c + d) where x and y are non-zero real numbers, then (1)/(xy) (a + b + c + d) =

If asinx+bcos(x+theta)+bcos(x-theta)=d , then the minimum value of |costheta| is equal to (a) 1/(2|b|)sqrt(d^2-a^2) (b) 1/(2|a|)sqrt(d^2-a^2) (c) 1/(2|d|)sqrt(d^2-a^2) (d) none of these

If asinx+bcos(x+theta)+bcos(x-theta)=d , then the minimum value of |costheta| is equal to (a) 1/(2|b|)sqrt(d^2-a^2) (b) 1/(2|a|)sqrt(d^2-a^2) (c) 1/(2|d|)sqrt(d^2-a^2) (d) none of these