Home
Class 12
MATHS
The value of Lt(t->0) 1/t(int0^pi tan(...

The value of `Lt_(t->0) 1/t(int_0^pi tan(tsin x)dx)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2)1/(1+tan^2x)dx

The value of I = int_0^(pi/4) (tan^(n+1)x)dx + 1/2 int_0^(pi/2) tan^(n-1)(x/2) dx is equal to

What is t int_0 ^(pi//2) e^(sin x) cos x dx equal to

If a, b and c are real numbers, then the value of lim_(trarr0) ((1)/(t)int_(0)^(t)(1+asinbx)^(c//x)dx) equals

lim_(x rarr 0)(int_0^x tsin(10t)dt)/x is equal to

The value of int_(0)^((pi)/(2))log(tan x)dx is equal to -

The value of int_0^(pi/2)dx/(1+tan^3x) is