Home
Class 12
MATHS
if a gt 0 and b^2 - 4ac =0 , then ...

if ` a gt 0` and ` b^2 - 4ac =0` , then the curve ` y= ax^2 +bx +c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a>0 and b^(2)-4ac<0, then the graph of y=ax^(2)+bx+c

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .

If a gt 0, b gt 0 and c gt 0 , then both the roots of the equations ax^2 + bx + c =0

Statement I If a gt 0 and b^(2)- 4ac lt 0 , then the value of the integral int(dx)/(ax^(2)+bx+c) will be of the type mu tan^(-1) . (x+A)/(B)+C , where A, B, C, mu are constants. Statement II If a gt 0, b^(2)- 4ac lt 0 , then ax^(2)+bx +C can be written as sum of two squares .

Statement I If a gt 0 and b^(2)- 4ac lt 0 , then the value of the integral int(dx)/(ax^(2)+bx+c) will be of the type mu tan^(-1) . (x+A)/(B)+C , where A, B, C, mu are constants. Statement II If a gt 0, b^(2)- 4ac lt 0 , then ax^(2)+bx +C can be written as sum of two squares .

Statement I If a gt 0 and b^(2)- 4ac lt 0 , then the value of the integral int(dx)/(ax^(2)+bx+c) will be of the type mu tan^(-1) . (x+A)/(B)+C , where A, B, C, mu are constants. Statement II If a gt 0, b^(2)- 4ac lt 0 , then ax^(2)+bx +C can be written as sum of two squares .

If a>0 and b^(2)-4ac=0, then the graph of y=ax^(2)+bx+c touches x -axis and lies above x -axis.

If a,b,cd in R and I is a root of the oquation ax^(2)+bx+c=0, then the curve y=4ax^(2)+3bx+2ca!=0, intersects x -axis at