Home
Class 12
MATHS
The value of sum(k=2)^oo{Lt(n->oo)sum(r...

The value of `sum_(k=2)^oo{Lt_(n->oo)sum_(r=1)^n((sqrt(n))/(sqrt(r)(ksqrt(n)-sqrt(r))^2)}` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)sum_(r=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

The value of ("lim")_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to

The value of lim_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^(2)) is equal to (1)/(35) (b) (1)/(4)(c)(1)/(10) (d) (1)/(5)

Lt_(ntooo)sum_(r=1)^(n)(1)/(n)[sqrt ((n+r)/(n-r))]

Lt_(ntooo)sum_(r=1)^(n-1)(1)/(sqrt(n^(2)-r^(2)))=

Lt_(ntooo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=

sum_(r=1)^(n)sin^(-1)((sqrt(r)-sqrt(r-1))/sqrt(r(r+1))) is equal to

sum_(r=1)^(n)sin^(-1)((sqrt(r)-sqrt(r-1))/(sqrt(r(r+1)))) is equal to

sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))