Home
Class 12
MATHS
Let In=int0^1(1-x^a)^n and if In/I(n+...

Let `I_n=int_0^1(1-x^a)^n` and if `I_n/I_(n+1)=1+lambda/alpha` then `lambda` equals (A) `n` (B) `n+1` (C) `1/n` (D) `1/(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

I_(n)=int_(1)^(e)(log)^(n)dx and I_(n)=A+BI_(n+1) then A&B=

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

If I_n=int_0^(pi//4)tan^("n")x dx , prove that I_n+I_(n-2)=1/(n-1)dot