Home
Class 12
MATHS
If int0^pi ((2x+3)secxtanx)/(4+tan^2x)d...

If `int_0^pi ((2x+3)secxtanx)/(4+tan^2x)dx=((ppi+q)pi)/(3sqrt(3))` then `p+q=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/3) (secxtanx)/(1+sec^2x)dx

int_(0)^(pi//2)(dx)/(1+tan^(3)x)=

If P = int_(0)^(3pi) f(cos^(2)x)dx and Q=int_(0)^(pi) f(cos^(2)x)dx , then

If P = int_0^(3pi) f(cos^(2)x) dx and Q = int_0^(pi) f(cos^(2)x) dx then

If P=int_(0)^(3pi)f(cos^(2)x) dx and Q=int_(0)^(pi) f(cos^(2)x)dx , then -

Show that int_(0)^(pi//4) (sqrt(tan x )+sqrt(cot x))dx= pi/sqrt(2)

Find the mistake in the following evaluation of the integral I=int_0^pi(dx)/(1+2sin^2x) , then : I=int_0^pi(dx)/(cos^2x+3sin^2x) =int_0^pi(sec^2x dx)/(1+3tan^2x)=1/(sqrt(3))[tan^(-1)(sqrt(3)tanx)]_pi^0=0

Find the mistake of the following evaluation of the integral I=int_0^pi(dx)/(1+2sin^2x) I=int_0^pi(dx)/(cos^2x+3sin^2x) =int_0^pi(sec^2x dx)/(1+3tan^2x)=1/(sqrt(3))[tan^(-1)(sqrt(3)tanx)]pi0=0