Home
Class 12
MATHS
If Lt(n->oo)int0^(sqrt(a))(1-(x^2)/n)^...

If `Lt_(n->oo)int_0^(sqrt(a))(1-(x^2)/n)^n x dx=1/(2sqrt(2))(n in N)` then the value of 'a' equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of the definite integral int_0^1(sin^(-1)sqrt(x))/(x^2-x+1)dx is (pi^2)/(sqrt(n)) (where n in N), then the value of n/(27) is

If the value of the definite integral int_0^1(sin^(-1)sqrt(x))/(x^2-x+1)dx is (pi^2)/(sqrt(n)) (where n in N), then the value of n/(27) is

If the value of the definite integral int_0^1(sin^(-1)sqrt(x))/(x^2-x+1)dx is (pi^2)/(sqrt(n)) (where n in N), then the value of n/(27) is

If the value of the definite integral int_(0)^(1)(sin^(-1)sqrt(x))/(x^(2)-x+1)dx is (pi^(2))/(sqrt(n)) (where n in N), then the value of (n)/(27) is

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

int([x+sqrt(a^(2)+x^(2))]^(n))/sqrt(a^(2)+x^(2))dx(n ne0)=

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N

int((a+sqrt(x))^(n))/(sqrt(x))dx,n!=-1

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)