Home
Class 12
MATHS
Let u=int0^(pi/4)(cos^2x)/(1+sin2x)dx ,...

Let `u=int_0^(pi/4)(cos^2x)/(1+sin2x)dx , v=int_0^(pi/8)1/((1+tan2x)^2)dx` then the value of `u/v` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2)1/(1+tan^2x)dx

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

Evaluate: int_0^(pi//4)sqrt(1+sin2x)dx (ii) int_0^(pi//4)sqrt(1-sin2x)dx

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is

The value of the integral sqrt2 int_0^(pi/2) f(sin2x) sinx dx=A (sqrt2/9) int_0^(pi/4) f(cos2x)cosx dx then the value of A is

Let u=int_(0)^(pi//2)cos((2pi)/(3)sin^(2)x)dx and v=int_(0)^(pi//2)cos(pi/3sinx)dx , then the relation between u and v is a) 2u=v b) 2u=3v c) u=v d) u=2v

Let u=int_0^(pi//4)((cos x)/(sinx+cosx))^2dx\ a n d\ v=int_0^(pi//4)((s in x+cosx)/(cosx))^2dxdot Find the value of v/udot

If int_(0)^(pi/2) f ( sin2 x ) sin x dx = A int_(0)^(pi/4) f ( cos 2 x ) cos x dx then the value of A is ( sqrt2 = 1.41)